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1      Introduction 
 
The Naval Research Laboratory’s (NRL) Code 7440 Production Enhancement Team at 
the Stennis Space Center has been tasked to develop ways to speedup hydrographic data 
processing at the Naval Oceanographic Office (NAVOCEANO) [Depn02]. This paper 
presents the final development of a parallelized version of the Pfm_loader application 
customized to run on a Beowulf cluster. 
 
This paper specifically covers software development efforts in early FY02 [Sarn02 ]. In a 
series of algorithms, called Schemes D, E, and F, a parallel algorithm previously 
implemented in Scheme C (see Figure 1) has been integrated with an improved version 
NAVOCEANO’s of the Pure File Magic (PFM) library. Former versions of this software 
not mentioned, namely Schemes A and B, were used as a design platform for the 
software architecture found in Scheme C. The main goal of this work was to increase the 
writing rate of binned data to a physical disk. The final software version is Scheme F. 
 
The final parallel code of Scheme F achieves the best speedup for the largest available 
test dataset. The simple runs (no filtering) exhibited a speedup of 10 as compared to the 
original, serial algorithm. Runs with swath filtering showed a top speedup of 8. Runs 
with area filtering reached a speedup of 6.5. Runs with both swath and area filtering 
showed a top speedup of 7.  In all cases, data strongly suggest that greater speedups could 
be achieved for larger than tested input datasets. 
 
Section 2 of this paper is devoted to Scheme D.  Section 3 presents results on an 
implemented threaded version of Scheme D. Section 4 deals with results for Scheme E. 
Section 5 describes Scheme F. Detailed results are presented on the performance of 
Scheme F when swath and area based filtering are enabled. Section 6 presents results 
illustrating the effect of the physical disk’s I/O throughput rates on speedup results. 
Section 7 discusses results and future plans. 
 
 
 
2     Scheme D 
 
In Scheme D, as in Scheme C, nodes are assigned one of the following roles — a master 
node, an I/O node, or a slave node. In general, more of the functionality of the original 
PFM library has been assigned to the slave nodes in Scheme D than in earlier schemes. 
 

• Each slave node sorts read-in sounding data according to bin index and 
compresses them in the same way as is done in the original PFM library. The 
sending buffer is now in the form of a character string. 

• The I/O node receives sounding data in the PFM compressed form and copies 
them into the PFM-style depth blocks consisting of six sounding data and a 
continuation pointer. 

• The master node role has not been changed from Scheme C. 
 



Miller, et al. (2003).  Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18. 

 3

2.1 Results 
Figure 2 illustrates achieved speedups for different loads. The test datasets are denoted, 
as previously, by “L” (the Liberty dataset), “12” (12 files), “24” (24 files), “48” (48 files), 
and “74” (74 files). Timings have been averaged over four runs. Speedup figures are 
created by comparing parallel and serial runs. In the case of algorithm speedups, the 

comparisons are made with corresponding timings for three Message Passing Interface 
(MPI) processes. Speedups exhibited by Scheme D reach about 7 for the four larger 
dataset loads. For the smallest dataset, Scheme D shows a speedup of around 5, cutting 
the run time from around 2 min to 23 sec. For the largest input dataset tested, the 
measured speedup is 7 fold, reducing execution time from around 24 min to 3 min 20 sec. 
The optimal number of MPI processes is 9 for this scheme. 
 
3 Threading 
 
3.1      Initial Plan 
The overall processing flow can be improved by grouping tasks into at least two threads 
on the I/O node and a slave node. Tasks related to MPI communication can be 
accomplished by a separate thread. A testing program mixing MPI and threading 
confirmed that MPI Chamleon (MPICH) allows only a single thread to execute MPI calls. 
On the I/O node, a separate communication thread would take care of receiving buffers. 
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Figure 1: Scheme C (the precursor to the schemes presented in this paper) 
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The other thread would be responsible for writing data to the PFM output file.  On the 
slave node, a communication thread would send full buffers to the I/O node. The second 
thread would transfer and process sounding data from input files to buffers. Tests are 
planned to check if the currently used dual-CPU system boards will efficiently support 
two application threads.  A quad system board for the I/O node could be used if that 
proved beneficial. 
 
3.2 Threading the I/O Node: Algorithm 
Only one part of the above plan has been implemented: Scheme D has been tested using 
Linux Posix threads on the I/O node only. Processing on the I/O node has been separated 
into two threads. The second thread submits data to an output PFM file. The main thread 
does all necessary initialization and then creates one additional thread, called the I/O 
processing thread. The main thread acts as the I/O communication thread. All MPI 
function calls are done only by the I/O communication thread. The I/O communication 
thread receives buffers from worker nodes and submits them to a work queue. The I/O 

processing thread checks the work queue for any full buffers,  and uses PFM function 
calls to write data to the PFM output file. An empty buffer is returned to the work queue 
area. The algorithm implements reuse of buffers in order to avoid reinitializing buffers. 
All access to the work queue is safeguarded by “a mutex lock” (Mutually Exclusive 
Access Lock) mechanism, a standard tool available in the thread library. A set of a few 
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Figure 2: Achieved speedup of Scheme D for different loads. 
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empty buffers is initialized in advance on the I/O communication side. If all empty 
buffers on the I/O communication node are used, that thread enters the work queue and 
gets their empty buffers. If no empty buffers are available in the work queue area, the I/O 
communication thread initializes a fresh buffer. Only if initializing the fresh buffer fails, 
the I/O communication thread waits for the I/O processing thread to return a buffer. The 
creation of additional buffers is always expected because PFM library operations are the 
slowest part of processing (since these library operations require multiple accesses to the 
physical disk drive). 
 
3.3 Threading the I/O Node: Results 
Figure 3 illustrates achieved speedups for different loads. The test datasets are denoted, 
as previously, by “L” (the Liberty dataset), “12” (12 files), “24” (24 files), “48” (48 files), 
and “74” (74 files). Speedup values for the Scheme D-Threaded version are noticeably 
smaller than the original Scheme D. Such results could be attributed to the additional 
overhead of the thread library. However, results for the largest test dataset (“74”) are 
especially disappointing, due to the lack of control of the memory usage on the I/O node 
in the threaded code.  This preliminary threaded version has no control on the number of 
buffers used to keep incoming buffers on the I/O node. Since worker nodes deliver 
buffers much faster than the I/O node could possibly write them to a (slow) physical disk, 
incoming buffers forced the operating system on the I/O node to use disk swap space, 
causing a significant slow down in processing.  

Figure 3: Achieved speedups of Scheme D-Threaded for different loads 
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4 Scheme E 
 
4.1 Grouping Sounding Data into Packages of 6 
The improved version of the PFM library, as well as the original library, writes data to 
the physical disk in fixed length blocks. Each block can hold up to six sounding values 
(the value of six is configurable). To take advantage of these blocks, sounding data are 
sent in groups of six (with the same bin index). At first, slave nodes send depths grouped 
into packets of six (with same bin indexes) to create full depth records in PFM style. 
When all input file names have been distributed (and most of the files have been already 
processed) the finishing slave nodes have some leftover depth data. Separately, each node 

cannot create a final full depth record containing 6 sounding values for one bin index. 
Under the direction of the master node, the first slave node to finish processing becomes 
a sorting and grouping node. Then, the other slave nodes send their leftover data to that 
sorting node for consolidation. Subsequently, full records are sent to the sorting and 
grouping node (the one which currently is accepting data) with the final leftover data sent 
to the I/O node. This additional effort of sorting into groups of six depths has the 
advantage of increasing speed of writing the data to disk as well as avoiding any need to 
reread and rewrite partially empty depth records. Further improvements include a new 
interface function to the PFM library to accommodate direct writing of blocks to the PFM 
file. Also, slave nodes are given the additional task of creation of complete depth blocks. 

Figure 4: Achieved speedup of Scheme E for different loads 
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This improvement reduces the I/O node’s task to simply updating the continuation 
pointers before writing data to disk. 
 
4.2 Results 
Figure 4 illustrates achieved speedups for different loads, compared with the original 
serial application. The test datasets are denoted, as previously, by “L” (the Liberty 
dataset), “12” (12 files), “24” (24 files), “48” (48 files), and “74” (74 files). The timings 
have been averaged from four runs. A comparison between speedup numbers for 
Schemes D and E shows that values for Scheme E are noticeably smaller, except for the 
largest test dataset. For the smallest dataset, Scheme E shows a speedup around 4.5, 
reducing the run time from around 2 min to 26 sec. For the largest input dataset tested, 
the measured speedup is around 7, reducing execution time from around 24 min to 3 min 
19 sec. The optimal number of MPI processes is 10 for larger datasets in Scheme E. 
 
4.3     Filtering, Recomputing Steps and Final Tune-up 
The original filtering functionality works well in the Beowulf cluster environment. The 
original swath filtering was being handled separately for each input file. Thus the new 
distributed scheme of processing input files by a group of slave nodes has no effect on 
swath filtering. The same has been found for the recomputing step and area based 
filtering, which run without any changes to the code because they are executed in the 
serial phase, on the I/O node, only after the PFM file has already been created.  

Figure 5: Achieved speedups of Scheme F with no Filtering 
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Figure 7:    Scheme F using both filters

Speedup using Both Filters
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5 Scheme F 
 
A tuned version of the new PFM library was used in Scheme F. Scheme F was tested 
with four different setups, involving two possible filtering procedures: swath filtering, 

Figure 6:      Scheme F with Area Filtering
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area filtering, both swath and area filtering, and no filtering (called “simple runs”). Each 
of these four setups has been tested with the standard five data test loads: “L” (the Liberty 
dataset), “12” (12 files), “24” (24 files), “48” (48 files), and “74” (74 files). Results with 
no filtering are illustrated in Figure 5. 
 
It was found that Scheme F achieves the best speedup for the largest available test 
dataset. The simple runs (no filtering) exhibited a speedup of 10. Runs with swath 
filtering enabled showed a top speedup of 8. Runs with area filtering reached a speedup 
of 6.5. Runs with both swath and area filtering enabled showed a top speedup of 7. In the 
simple runs, swath filtering and area-based filtering are turned off. Figure 6 illustrates 
achieved speedups for different loads and filter processing. For the smallest dataset, when 
swath filtering is turned on, worker nodes filter the sounding data by swath before 
assembling them and sending to the I/O node. Since swath filtering puts additional 
processing onto worker nodes, such code behavior is to be expected. Worker nodes 
perform swath filtering on sounding data read from the input files. When area filtering is 
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also turned on, the I/O node also performs area filtering of sounding data. Since area 
filtering is done exclusively by the I/O node after all sounding data has been written to 
the PFM file, the area filtering is performed in the serial phase of overall processing.  
 
6      The Role of Hard Drive Performance 

 
This section presents arguments to support the claim that the application Pfm_loader is 
I/O bound. When Scheme D was developed, upgrading the BIOS on each Beowulf 
cluster node resulted in significant improvement in the throughput of cluster IDE (ATA 
100) disks.  These changes significantly affected the run time of parallel codes as well as 
the original serial code. The changes for the original serial code are in the range from 5% 
to 11% (see table 1). The resulting speedup is presented in figure 7. Speedup numbers are 
derived by comparing parallel and serial runs. In the case of algorithm speedups, the 
comparisons are done with corresponding timings for three MPI processes. The changes 
range from 29% to 57%, which at least triples that of corresponding percentage changes 
for serial runs. 

7   Summary 
 
The optimal number of MPI processes for the simple runs with large datasets is 9.6. 
When area filtering is turned on, the I/O node filters sounding data by geographic area. 
Since area filtering is done exclusively by the I/O node after all sounding data has been 
already written to the PFM file, this processing adds to the length of the serial phase in 
the overall processing. The serial processing nature of area filtering causes the greatest 
reduction in performance. The results generated by testing two of the four types of 
processing provide arguments for increasing the size of the Beowulf cluster. These two 
processing types are: (a) processing with swath filtering enabled, and (b) processing with 
both swath and area filtering enabled. For the largest test dataset, both processing 
methods achieved their best speedups when running with the maximal possible number of 
MPI processes. However, the same data indicates the speedup increase would be modest. 
 
In all cases, the data strongly suggests that a speedup greater than 10 could be achieved 
for larger datasets. This property is a positive characteristic of the current parallel code. It 

      Table 1:    Timings of change in hard drive performance 

Number of Generic Sensor Format (GSF) input files 
7 12 24 48 74 

Timings of serial code, before BIOS upgrade 
125.106 203.57 439.253 946.034 1607.132 

Timings of serial code, with BIOS upgrade 
118.439 192.216 412.311 893.726 1433.211 

Percentage change 
5.33% 5.58% 6.13% 5.53% 10.82% 
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also strongly suggests that the five test datasets have not yet pushed the current code and 
cluster configuration to its limits.  
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